Microcalorimetry, Adsorption, and Reaction Studies of CO, O_2 , and $CO + O_2$ over Fe_2O_3 , Au/Fe_2O_3, and Polycrystalline Gold Catalysts as a Function of Reduction Treatment

N. M. Gupta¹ and A. K. Tripathi

Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India

Received February 10, 1999; revised May 10, 1999; accepted June 30, 1999

Thermochemical and volumetric measurements were made for the adsorption and reaction of CO, O_2 , and $CO + O_2$ on catalysts from 300 to 470 K, as a function of H₂ pretreatment. The transformation of Au/Fe₂O₃ to Au/Fe₃O₄ led to inhibited adsorption and oxidation of CO. The exposure of a reduced Au/Fe₂O₃ to $CO + O_2$ resulted in an $O_{2(ad)}/CO_{(ad)}$ ratio >1 as well as the reoxidation of the support and the progressive restoration of its catalytic activity. The reaction routes involved in the oxidation of CO over polycrystalline gold were different from those over the Au/Fe₂O₃ catalyst. Thus, while the simultaneous adsorption of the reactant molecules was responsible for this reaction on Au metal, the redox mechanism involving the removal and subsequent replenishment of lattice oxygen played a role in both the Au/Fe₂O₃ and Fe₂O₃ catalysts, where the presence of gold promoted these steps. © 1999 Academic Press

Key Words: CO oxidation; supported gold catalyst; role of lattice oxygen; pretreatment effect.

INTRODUCTION

In the first part of this study (1), we used microcalorimetry and FTIR methods to demonstrate that the oxidation of CO on the Fe₂O₃ and Au/Fe₂O₃ catalysts involves a common redox mechanism where the removal and replenishment of lattice oxygen plays a prominent role. The increase in the reaction rate in the presence of gold is attributed to the surge in temperature at the Au/Fe₂O₃ interface which in turn is a result of the energy released during CO chemisorption on gold crystallites. To investigate the role of adsorbed and lattice oxygen, similar experiments were performed on Au/Fe₂O₃, Fe₂O₃, and polycrystalline gold samples pretreated in H₂. This enabled us to evaluate the performance of a set of catalysts, containing Au, with similar characteristics but with the support in different oxidation states. H₂ reduction made it easier to work with a gold surface free of adsorbed oxygen. In situ x-ray diffraction experiments

¹ To whom correspondence should be addressed. Fax: 022-91-5505151. E-mail: nmgupta@magnum.barc.ernet.in. were performed to monitor the effect of gold on the phase transformations in Fe_2O_3 as a result of a reduction in H_2 at different temperatures.

EXPERIMENTAL

Catalysts

The preparation method and the characteristics of Au (5 at.%)/Fe₂O₃, Fe₂O₃, and polycrystalline gold powder samples are given in Ref. (1). A 40- to 80-mesh fraction (~150- μ m particle size) of these samples was used in all the experiments. The catalyst samples, labeled (r), were reduced in H₂ (e.g., Fe₂O₃(r)). (o) refers to samples treated in O₂.

Microcalorimetry

A Calvet-type heat-flow microcalorimeter (C-80 Cetaram, France), equipped with gas circulation vessels and connected to a GC, was employed in this study as described in our earlier publications (1, 2). A fresh lot of catalyst (200 mg) was placed in the sample holder. To reduce the catalyst, the samples were heated in situ in an H₂ flow (20 ml min^{-1} , 475 K, 2 h) followed by evacuation (475 K, 1 h) and heating in He. While keeping the sample in the He flow at a desired temperature, several pulses of 4.1 μ mol of CO, O₂, or $CO + O_2$ (2:1) were injected on a sample at intervals of 15-20 min. The heat produced and the amount of gases adsorbed, reacted, or produced in the process were evaluated for each pulse exposure. After 8-10 pulses of CO at a given temperature, a sample was kept in an He flow for about an hour and then exposed to successive O₂ pulses to evaluate the O₂ reactivity of the surface species formed. The cell was flushed with He at the experimental temperature after each O₂ pulse.

Activity

The effect of reducing pretreatment (H_2 , 470–570 K) of Au/Fe₂O₃ on its CO oxidation activity was evaluated

according to the procedure described in (1). Measurements were made in a stream of $CO + O_2 + He$ (2:1:17, 1200 ml h^{-1} g⁻¹) and at a reaction temperature of 298 K.

XRD Study

For phase characterization after H_2 reduction at different temperatures, XRD patterns of Au/Fe₂O₃ and Fe₂O₃ samples were recorded using a MRC model X-86-N3 hightemperature attachment, mounted to a Philips wide-angle goniometer. A small amount of powdered sample was placed on a platinum–40% rhodium plate, which also served as a heater. The sample was treated *in situ* in a stream of H_2 + He (1:1) flow (120 ml min⁻¹) at a temperature between 300 and 773 K for about 30 min, after which the XRD pattern was recorded. The high-temperature attachment was calibrated and aligned using a Si standard and the reflection of the Pt–40% Rh heater as an internal standard. A Philips x-ray diffraction unit and Cu*K* α radiation were used in this study.

RESULTS

Au/Fe₂O₃ and Fe₂O₃ Catalysts

CO adsorption. Figure 1 shows the average fraction of CO adsorbed (curves a and b) and the yield of CO₂ (curve c), when Au/Fe₂O₃(r) and Fe₂O₃(r) samples were exposed at different temperatures to five successive pulses of 4.1 μ mol of carbon monoxide. The changes in enthalpy during the process are given in Figs. 1d and 1e. On one

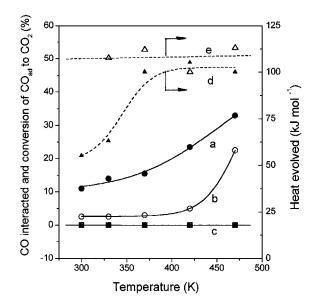


FIG. 1. Average fraction of CO adsorbed/reacted (a, b), conversion $CO_{ad} \rightarrow CO_2$ (c), and the heat produced in the process (d, e) when a 4.1- μ mol pulse of CO was injected over Au/Fe₂O₃(r) and Fe₂O₃(r) catalysts. (a, c, d) Au/Fe₂O₃(r); (b, c, e) Fe₂O₃(r).

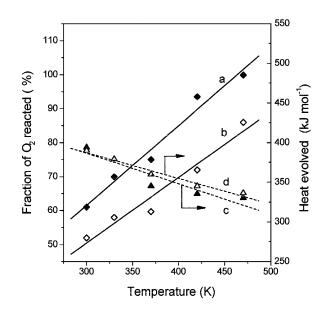
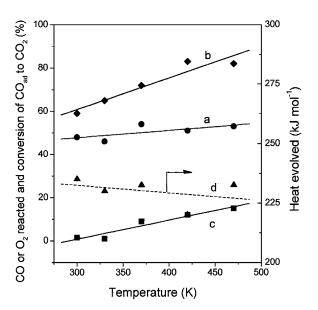



FIG. 2. Fraction of O₂ adsorbed (a, b) and the heat produced (c, d) at different temperatures when Au/Fe₂O₃(r) and Fe₂O₃(r) catalysts were exposed to a 4.1- μ mol pulse of O₂ subsequent to the injection of 10 pulses of CO followed by flushing under helium. (a, c) Au/Fe₂O₃(r); (b, d) Fe₂O₃(r).

hand, a greater amount of CO was adsorbed over Au/Fe₂O₃ (curve a), compared to Fe_2O_3 (curve b). On the other hand, a smaller amount of CO was held over the Au/Fe₂O₃(r) and Fe₂O₃(r) samples at all exposure temperatures, compared to the corresponding samples pretreated in oxygen. Thus, compared to 40-60% adsorption of CO over the $Au/Fe_2O_3(o)$ sample (1), the fraction adsorbed/reacted was only 10-30%, depending on the temperature of the sample, when a pulse of CO was injected over a reduced sample (Fig. 1a). In contrast to the temperature-dependent $CO \rightarrow CO_2$ conversion of 2–60% over Au/Fe₂O₃(o) (1), no CO_2 was formed during the interaction of CO with $Au/Fe_2O_3(r)$, irrespective of the sample temperature (Fig. 1c). Accordingly, only a small amount of heat was produced, the ΔH being \sim 50–60 kJ mol⁻¹ for CO exposure below 350 K and increasing to $\sim 100 \text{ kJ mol}^{-1}$ at higher temperatures (Fig. 1d). A higher q value (~110 kJ mol⁻¹) was found for the CO interaction on Au/Fe₂O₃(o) samples (1). As in the case of Au/Fe₂O₃(r), no CO₂ formed during the adsorption of CO on Fe₂O₃(r) samples also at all temperatures. The q value was about $1\overline{10}$ kJ mol⁻¹ of CO adsorbed, irrespective of the adsorption temperature (Fig. 1e), compared to q values of 125-175 kJ mol⁻¹ found for the $Fe_2O_3(o)$ sample (1).

 O_2 adsorption. A greater amount of oxygen reacted with the Au/Fe₂O₃(r) (Fig. 2a) as compared to that with Fe₂O₃(r) (Fig. 2b), when the samples were exposed to a pulse of 4.1 μ mol of oxygen following exposure to 10 successive pulses of CO and flushing with He at different catalyst temperatures. On one hand, successive pulses of O₂

FIG. 3. Fraction of CO (a) and O_2 (b) reacted and the conversion of CO_{ad} to CO_2 (c) when an Au/Fe₂O₃(r) catalyst was exposed to a pulse of 4.1 μ mol of CO + O₂ (2 : 1) at different temperatures. (d) Enthalpy change.

gave rise to a decreasing fraction of adsorbed O_2 , the effect being more pronounced at higher reaction temperatures. On the other hand, a similar amount of heat was produced with the Au/Fe₂O₃ and Fe₂O₃ samples upon adsorption of O_2 , the *q* value decreasing progressively from 400 kJ mol⁻¹ at 300 K to ~325 kJ mol⁻¹ at 470 K (Figs. 2c and 2d).

 $CO + O_2$ adsorption. Average values of the fraction of CO or O_2 adsorbed/reacted, conversion of CO_{ad} to CO_2 , and the corresponding values of changes in enthalpy during the injection of a 4.1- μ mol CO + O₂ pulse on Au/Fe₂O₃(r) and $Fe_2O_3(r)$ samples are given in Figs. 3 and 4, respectively. Only a small amount of CO_2 (~12% in Au/Fe₂O₃ and 5% in Fe_2O_3) was observed during the interaction of CO and O_2 over reduced samples at 470 K; the yields decreased further at lower reaction temperatures (Figs. 3 and 4 (curve c)). The trend of CO and O₂ adsorption on the two reduced samples was, however, quite different. Thus, while the maximum adsorption of CO on $Fe_2O_3(r)$ was about 10%, depending on the catalyst temperature (Fig. 4a), on one hand, about 50% of the dosed CO was adsorbed from a $CO + O_2$ pulse over $Au/Fe_2O_3(r)$, irrespective of the temperature (Fig. 3a). On the other hand, about 60-80% of O₂ was adsorbed/reacted from a $CO + O_2$ pulse over both Au/Fe₂O₃(r) and Fe₂O₃(r) catalysts, the amounts being slightly higher over samples containing gold (Figs. 3 and 4 (curve b)).

The amount of heat produced on $CO + O_2$ pulse exposures over two samples also showed a different trend. Thus, while the average q value for Fe₂O₃(r) decreased progressively from ~370 to 260 kJ mol⁻¹ with an increasing sample temperature (300–470 K) (Fig. 4d), the value was constant at 232 ± 2 kJ mol⁻¹ for the Au/Fe₂O₃(r) sample (Fig. 3d).

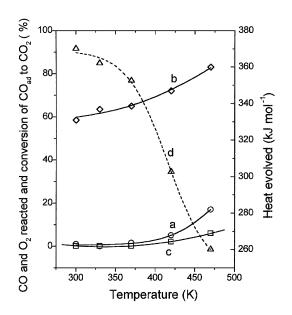


FIG. 4. Fraction of reacted CO (a) and O_2 (b) and the conversion of CO_{ad} to CO_2 (c) when a $Fe_2O_3(r)$ catalyst was exposed to a pulse of 4.1 μ mol of CO + O_2 (2 : 1) at different temperatures. (d) Enthalpy change.

Au Catalyst

CO adsorption. In contrast to the negligible adsorption on Au(o) (1), about 5% of CO was adsorbed on the Au(r) sample when a 4.1- μ mol pulse was injected at 300 K; this amount decreased as the catalyst temperature increased (Fig. 5a). No CO₂ was formed, however, and a small amount

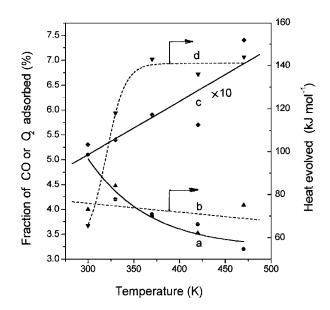
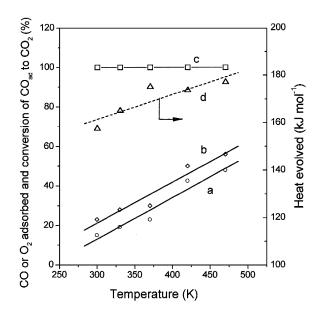


FIG. 5. Fraction of CO adsorbed (a) and the amount of heat produced (b) during exposure of a 4.1- μ mol pulse of CO over a polycrystalline gold sample pretreated in H₂. Curve c shows the amounts of O₂ adsorbed and curve d the heat produced when an Au(r) catalyst was exposed to a pulse of 4.1 μ mol of O₂ following exposure to 10 successive pulses of CO and flushing in He. Curve c must be multiplied by a factor of 10.


of heat (\sim 75 kJ mol⁻¹) was produced (Fig. 5b). The amount of CO_{ad} decreased with successive CO pulse injections; the data in Fig. 5 refer to the first pulse.

 O_2 adsorption. Curves c and d in Fig. 5 give data on adsorption and the *q* value for Au(r), when following CO pulse exposures as mentioned above the sample was flushed in He and then exposed to a pulse of 4.1- μ mol O₂. About 50% of oxygen was adsorbed at 300 K; this value increased to about 70% with an increasing sample temperature, up to 470 K (Fig. 5c). At the same time, the *q* value increased from ~60 to 145 kJ mol⁻¹ (Fig. 5d).

The amount of O_2 adsorbed and the q value decreased sharply when successive pulses of O_2 were injected over a catalyst, the effect being more pronounced at higher temperatures.

 $CO + O_2$ adsorption. Larger fractions of CO and O_2 were adsorbed/reacted over Au(r) as compared to those over Au(o), when exposed to a pulse of $CO + O_2$ under similar conditions; the ratio $O_2(ad)/CO(ad)$ was about 1.3 at all the reaction temperatures (Figs. 6a and 6b). Almost complete conversion of CO_{ad} to CO_2 was found, irrespective of the reaction temperature (Fig. 6c). The value of q increased from 155 to 175 kJ mol⁻¹ with an increasing temperature (300–470 K) (Fig. 6d).

Effect of gold on the reduction of Fe_2O_3 . Reduction of Fe_2O_3 in flowing H_2 ($H_2 + He \sim 1:1$) gave rise to the formation of Fe_3O_4 above 450 K, reaching a maximum concentration at about 570 K. Above 600 K, the intensity of the XRD lines due to Fe_3O_4 decreased, while new reflections,

FIG. 6. Average percentage of CO (a) and O_2 (b) adsorbed/reacted and conversion of CO_{ad} to CO_2 (curve c) when a polycrystalline Au(r) sample was exposed to a 4.1- μ mol pulse of CO + O_2 (2:1) at different temperatures. Curve d shows the heat produced.

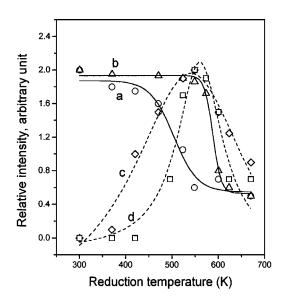


FIG. 7. XRD data showing the effect of gold upon the reduction of Fe_2O_3 in a flow of H_2 at different temperatures. Curves a and b show the relative intensity of Fe_2O_3 signals, while c and d show the reflections due to Fe_3O_4 . (a, c) Au/Fe₂O₃; (b, d) Fe₂O₃.

corresponding to α -Fe, were observed. Almost complete reduction of α -Fe₂O₃ to α -Fe was observed above 700 K. FeO was not detected at any stage under the present reduction conditions.

The presence of gold resulted in the reduction of α -Fe₂O₃ at much lower temperatures and the beginning of Fe₃O₄ formation in Au/Fe₂O₃ was observed at temperatures as low as 370 K. Similarly, the formation of α -Fe began in this case at about 500 K compared to 600 K in the case of pure Fe₂O₃. Figure 7 presents the relative intensity of the reflections due to Fe₃O₄ ($2\theta = 35.45^{\circ}$) and Fe₂O₃ ($2\theta = 33.17^{\circ}$), showing the comparative reduction of the two samples.

Effect of reduction on catalytic activity. The CO oxidation activity decreased considerably when an Au/Fe₂O₃ catalyst was pretreated in hydrogen; the extent of activity loss depended on the reduction temperature. The activity, however, reached its original level when the catalyst was kept in a stream of $CO + O_2$ for a prolonged period. Figure 8 gives the time-dependent catalytic activity at 298 K of an Au/Fe₂O₃ sample prereduced in H₂ at three different temperatures from 473 to 573 K. The catalytic activity reached 100% within about 100 min, irrespective of the reduction temperature.

DISCUSSION

The salient features of this study are the following:

1. The loss of catalytic activity on the transformation of Fe_2O_3 to Fe_3O_4 under hydrogen reduction conditions of this study and its restoration during prolonged contact with

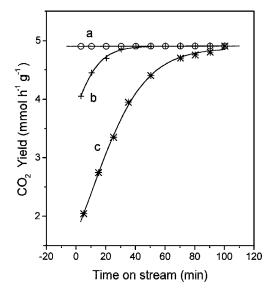


FIG. 8. The effect of H_2 reduction on the CO oxidation activity of an Au/Fe₂O₃ catalyst measured at 298 K as a function of time on stream. Reduction temperature: (a) 473 K, (b) 523 K, and (c) 573 K.

 $CO + O_2$ (Figs. 7 and 8) confirm the crucial role of oxygen in the support in CO_2 formation.

2. Even though ~10–30% of carbon monoxide was adsorbed from a CO pulse injected over an Au/Fe₂O₃(r) catalyst (Fig. 1a), no CO₂ was produced from 300 to 470 K (Fig. 1c), indicating that there will not be a disproportion of CO (i.e., $2CO \rightarrow C + CO_2$) at the gold sites under these reaction conditions. Similar conclusions may be drawn from the data for a pure gold sample.

3. The q values of \sim 70–100 kJ mol⁻¹ (Fig. 1d) are attributed to the adsorption of CO at Au⁰ sites at low temperatures and at both the metal and support sites at higher reaction temperatures (Table 1, steps I and IV) (1). Enthalpy values in Fig. 1e correspond to the adsorption of CO over Fe₂O₃ (Table 1, step IV) (1).

4. Heat values given in Figs. 2c and 2d (400–350 kJ mol⁻¹) clearly indicate the predominent role played by the reoxidation of Fe₃O₄ formed during the reduction of iron oxide, i.e., $4Fe_3O_4 + O_2 \rightarrow 6Fe_2O_3$ ($\Delta H = -460$ kJ mol⁻¹), over the Au/Fe₂O₃(r) and Fe₂O₃(r) samples (Table 1, step IX) (1). Data in Figs. 2a and 2b clearly demonstrate that the presence of gold promoted the above-mentioned step.

5. Data in Fig. 3 show that although considerable fractions of CO and O_2 were adsorbed from a CO + O_2 pulse over the Au/Fe₂O₃(r) catalyst (curves a and b), the yield of CO₂ from CO_{ad} was very low (Fig. 3c) compared to that in similar experiments with Au/Fe₂O₃(o) (1). This clearly indicates that the direct reaction of CO_{ad} and O_{ad} at gold sites may also play a negligible role in the oxidation of CO, particularly at reaction temperatures below 400 K. This finds support in the data of Fig. 8, showing the loss of catalytic activity of Au/Fe_2O_3 on reduction, while the characteristics of gold remained unchanged.

6. The heat values for Fe₂O₃(r) (Fig. 4d) are again commensurate with the enthalpy changes associated with steps VIII and IX in Table 1 (Ref. (1)), i.e., the removal of lattice oxygen ($\Delta H = -50$ kJ mol⁻¹) and its subsequent replenishment ($\Delta H = -460$ kJ mol⁻¹). The individual contribution of these steps will depend upon the reaction temperature, the role of step VIII increasing with an increasing catalyst temperature, thus explaining the temperature-dependent variation in *q* values (Fig. 4d). In the case of Au/Fe₂O₃(r), the *q* values are also influenced by the chemisorption of CO at Au sites, as discussed above, thereby leading to a lower *q* value of ~230 kJ mol⁻¹ (Fig. 3d). The thermochemical data of this study thus reveal that a similar reaction mechanism prevails during the oxidation of CO over Au/Fe₂O₃ in different temperature ranges.

7. On one hand, in the case of pure gold, CO or O_2 gases are adsorbed in molecular form when dosed individually, as is evident from the *q* values given in Fig. 5; these values correspond to the heat values of steps I and II in Table 1 (1). On the other hand, the increasing amounts of CO and O_2 were adsorbed on polycrystalline gold from a pulse of $CO + O_2$ with an increasing catalyst temperature (Figs. 6a and 6b); almost complete conversion of CO_{ad} to CO_2 occurred, irrespective of the temperature (Fig. 6c). The *q* value of $\sim 170 \pm 10$ kJ mol⁻¹ (Fig. 6d) agrees with the simultaneous adsorption and reaction of CO and O_2 at the gold sites (Table 1, step VII) (1).

From the points listed above, it is clear that the catalytic behavior of pure gold is different from that of the gold dispersed over Fe_2O_3 . While in the case of polycrystalline gold the reaction occurred via a Langmuir–Hinshelwood-type mechanism, i.e., simultaneous adsorption and reaction of CO and O at gold sites, the redox mechanism involving the removal and the replenishment of lattice oxygen played a dominant role in the CO oxidation over Fe_2O_3 -based catalysts. The presence of highly dispersed gold promoted the adsorption of both CO and O_2 , as concluded in (1). In this respect, the behavior of Au is comparable to that of group VIII metals such as Pt and Pd (2, 3).

ACKNOWLEDGMENT

The authors thank Dr. M. D. Mathews, Applied Chemistry Division, for his help in XRD studies.

REFERENCES

- 1. Tripathi, A. K., Kamble, V. S., and Gupta, N. M., J. Catal. 187, 331 (1999).
- 2. Gangal, N. D., Gupta, N. M., and Iyer, R. M., J. Catal. 126, 13 (1990).
- 3. Tripathi, A. K., and Gupta, N. M., J. Catal. 153, 208 (1995).